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ABSTRACT

A general purpose micromechanics analysis that discretely models the yam architecture

within the textile repeating unit cell, was developed to predict overall, three dimensional,

thermal and mechanical properties, damage initiation and progression, and strength. This

analytical technique was implemented in a user-friendly, personal computer-based, menu-

driven code called Textile Composite Analysis for Design (I'EXCAD). TEXCAD was used to

analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension,

compression, and shear strengths correlated well with available test data for both woven and

braided composites. Parametric studies were performed on both woven and braided

architectures to investigate the effects of parameters such as yam size, yam spacing, yam

crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile

composite.

Key Words: textile composites, modeling, plain weave, strength, triaxial braid, yam,

crimp, design, thermal, stiffness, damage.



INTRODUCTION

Composite materials reinforced with woven and braided fabric preforms are being

considered for potential structural applications in the aircraft and automotive industries.

Fabric-reinforced 'textile' composites potentially have better out-of-plane stiffness, strength,

and, toughness properties than tape laminates. They are also amenable to automated and

efficient manufacturing techniques. However, the architecture of a textile composite is

complex and, therefore, the parameters controlling its strength properties are numerous. This

necessitates the development of analytical models to predict the failure modes and strength

properties of textile composites. The present study focuses on the analysis of woven and

braided textile composites.

Fabric Architecture

A two-dimensional (2-D) plain weave composite laminate is one of the simplest textile

composites and it consists of stacked, pre-impregnated layers of woven fabric [I] which are

cured and consolidated by a process similar to tape laminates. The fabric is composed of two

sets of interlacing, mutually orthogonal (warp and fill) yarns (Fig. 1). Each yarn is a bundle

of filaments (or fibers) and the yarn size is measured by the number of filaments in the yarn.

The fabric is woven on a loom and its architecture is characterized by the interlacing pattern of

the warp and fill yarns.

The periodicity of the repeating pattern in a woven (or braided) fabric can be used to

isolate a small repeating unit cell (RUC) which is sufficient to describe the fabric architecture.

The RUC for the plain weave is indicated in Fig. 1 by dark borders. The interlacing of the

yarns in a fabric leads to yarn undulation or 'crimp'. Composite stiffness and strength

properties are governed by (i) weave parameters such as weave architecture, yarn sizes, yarn

spacing, and yarn crimp; (ii) laminate parameters such as stacking orientations and overall

fiber volume fraction; and (iii) material parameters such as yam and resin stiffness and

strength properties.



Braided preforms are fabricated over a cylindrical mandrel. A single layer of a 2-D

braid consists of either two or three intertwined yarns. The braider yarns follow the +0 and

-0 directions and usually interlace in either a 1 x 1 or a 2 x 2 pattern [2, 3]. For example, in a

2 x 2 pattern a +0 braider yarn continuously passes over two -0 braider yarns and then under

two -0 braider yarns and vice versa.

addition to the off-axis braider yarns.

inserted between the braider yarns.

A 2-D triaxial braid (Fig. 2) consists of axial yarns in

The axial yarns follow the longitudinal direction and are

A 2-D triaxial braided composite laminate of a certain desired thickness is formed by

overbraiding layers of the desired architecture on top of each other. After the preform is

removed from the mandrel, resin is introduced by a resin transfer molding process. This leads

to a two dimensional material as there are no interlayer yarns through the laminate thickness.

Composite stiffness and strength properties are governed by (i) braid parameters such as braid

architecture, yam sizes, yam spacing, and yam crimp; and (ii) material parameters such as

yam and resin stiffness and strength properties and overall fiber volume fraction.

Typical photomicrographs for a 2x2, 2-D braided laminate are shown in Fig. 3. The

longitudinal section (Fig. 3(a)) along the axial yams indicates minor crimp in these yams.

Fig. 3(b) shows a transverse section of the laminate. The lenticular cross-sectional shape of

the axial yarns is evident. Also, the axial yarns do not stack on top of one another. This is

due to 'nesting' between layers during the brading operation. Fig. 3(c) shows a section along

the braider yarns. The degree of crimp in the braider yams as they interlace with the other

yams is well illustrated in this section.

Analytical Techniques

A number of analytical and numerical techniques have been used to predict the stiffness

properties of both woven and braided composites and a review of the linear elastic models used

in the past for the prediction of overall stiffness properties was presented in Refs. [2] and [4].

However, there are only a few models that have been developed for the strength prediction of



textile composites. Some of the earlier models for predicting nonlinear response, damage

propagation and strength of woven and braided composites are highlighted below.

Ishikawa and Chou [5] developed a 2-D fiber undulation model based on classical

lamination theory which considered the undulation in the fill yarn direction but neglected the

undulation in the warp yarns of a woven composite. They modeled nonlinear shear response

of both the fill yarns and the interstitial matrix along with the effects of transverse cracking of

the warp yarns to predict the knee in the stress-strain response of woven composites. Kriz [6]

used a 2-D finite element model which assumed a linear undulation path for the fill and warp

yarns to study the effect of transverse cracking on the stiffness and internal stresses of a

glass/epoxy plain weave composite.

Stanton and Kipp [7] developed a nonlinear constitutive model for plain weave carbon-

carbon composites which accounted for the differences in tension and compression response,

warp-fill crossover damage and multiaxial stress interactions using a simple interaction formula

along with experimental stress-strain data for all six components under tension and

compression loading. Jortner [8] developed a 2-D mechanistic model which modeled the

undulations of the fill yarns but neglected the undulations of the warp yarns. He used a stress-

averaging scheme which accounted for the nonlinear shear response of the fill yarns and the

transverse cracking of the warp yarns to analyze plain weave carbon-carbon composites.

Ko and Pastore [9] used a fabric geometry model to define the yarn orientations in a

three-dimensional (3-D) braided composite. They used the yarn orientations to first estimate

the strength of the fabric preform and then computed composite strength using a simple rule of

mixtures. Ko [10] also used the fabric geometry model together with a maximum strain

energy criterion to predict yarn failures and ultimate strength of a 3-D braided composite.

Dow and Ramnath [11] modeled woven fabric composites using a simple geometry

model that assumed a linear undulation path for the fill and warp yarns. They computed

constituent fiber and matrix stresses from local yarn stresses which were calculated using an

iso-strain assumption and predicted failure based on the average stresses in the fiber and the
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matrix along with a maximum stress criterion. Masters, Fedro and Ifju [12] used the fabric

geometry model together with a simple linear yarn bending model and an iso-strain assumption

to compute average fiber and matrix stresses which were used to predict local yarn failure and

strength for 2-D triaxial braided composites.

Three-dimensional finite element models (FEM) have also been used for the prediction

of nonlinear material properties [13] and the modeling of damage [14] of plain weave

composites. The 3-D FEMs are highly computer intensive and also require considerable time

and effort for model generation. Foye [15] developed homogenized replacement finite

elements and analyzed sub-cells within the RUC to overcome these limitations. However, he

had to manually calculate the orientations of the different yarn directions, yarn inteffacial

planes and volume fractions, for each element in the 3-D model. FEM is, therefore, not well

suited for performing parametric studies to investigate the sensitivity of composite strength

properties to fabric architecture parameters.

The earlier analysis techniques often made simplifying assumptions regarding the fabric

architecture and did not account for the geometric nonlinear effects of yarn bending and yarn

straightening/wrinkling during axial tension/compression loading. The objective of the

present study was to develop a general-purpose analysis technique for the prediction of failure

initiation, damage progression, and strength of 2-D woven and braided composite materials.

A general-purpose analysis technique was previously developed by Naik, et al [2, 3]

for the prediction of overall stiffness properties of 2-D woven and braided composites. The

yarn architecture was discretely modeled using sinusoidal undulations at yam crossovers.

Overall thermal and mechanical properties were calculated based on an iso-strain assumption.

This earlier analysis technique will be extended to include the effects of nonlinear shear

response and nonlinear material response due to the accumulation of damage in the yams and

the interstitial matrix and also the effects of yarn bending and the geometrically nonlinear

effects of yarn straightening/wrinkling during axial tension/compression loading.
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The present analysis technique was used to calculate the overall stress-strain response,

damage progression and the failure strengths for woven and braided composites. Parametric

studies were also performed on the woven and braided architectures to investigate the effects

of yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the

strength properties of the textile composite.

ANALYTICAL PROCEDURES

The analysis of a fabric reinforced composite requires, first, a proper three dimensional

description of the preform architecture. The geometric modeling of the preform architecture

was performed, in Refs. 2 and 3, by utilizing the periodicity of the textile composite to isolate

a repeating unit cell (RUC). For each yam within the RUC the yam centerline path was then

described by assuming a flattened lenticular cross-sectional shape for the interlacing yams

(Figs. 4 and 5). This assumption was based on the lenticular yam cross-sectional shapes

observed in micrographs of the composite (see Fig. 3). Details of the geometric modeling

technique and its applications to various woven and braided architectures were included in Ref.

2.

Having described the fiber architecture, the three dimensional effective stiffnesses for

the composite were computed by first discretizing each yam in the RUC into yam slices and

then using the material properties, spatial orientation, and volume fraction of each yam slice in

a volume averaging technique that assumed an iso-strain state within the RUC [2, 3].

The above stiffness averaging procedure was used in the present study at each

incremental load step to calculate the overall stiffness matrix after accounting for the effects of

nonlinear shear response and local damage accumulation. The effects of yam bending and

straightening/wrinkling were accounted for by a curved beam on elastic foundation model

which was used to compute the local yam slice stresses at each incremental load step.

Maximum stress/strain criteria were used for yam slice failure prediction. Yam slice stiffness
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properties were reduced appropriately at each incremental step. A cracked yarn bending

model was used to account for the effect of cracking on the compliance of the undulating yarn.

The following subsections will describe (i) the geometric and analytical models for the

plain weave and the 2-D triaxial braided composites, (ii) the nonlinear shear response model,

(iii) the incremental approach, (iv) the yarn bending model, (v) the failure criteria, (vi) the

stiffness reduction scheme, and (vii) the cracked yarn bending model.

Geometric Model for Plain Weave Composite

The RUC for the 2-D plain weave composite is shown in Fig. 4. The sectional view in

Fig. 4 (section A-A) shows the undulations of a warp yarn as it crosses over and under the fill

yarns. The undulating portion of each yarn was assumed to follow a sinusoidal path.

The plain weave composite is usually specified by known quantities such as yarn

spacing, yarn filament count, yarn packing density, filament diameter, and overall fiber

volume fraction. These known quantities were used to determine the unknown quantities such

as yarn thicknesses, yarn cross-sectional areas, yarn crimp angle and yarn undulating paths.

The geometric modeling procedure used to compute these unknown quantifies was described in

detail in Ref. 2.

Geometric Model for 2-D Triaxial Braided Composite

The RUC used for the 2x2, 2-D triaxial braid is shown in Fig. 5. The sectional view

A-A shows the undulation of a braider yarn which undulates over and under the axial yarns in

the RUC. The 2-D triaxial braided composite is usually specified by known quantities such as

braid angle, axial yarn spacing, yarn filament counts for the axial and braider yams, yam

packing density, filament diameter, and overall fiber volume fraction. Like the plain weave,

these known quantities were used to determine the unknown quantities such as yam

thicknesses, yarn cross-sectional areas, yarn crimp angle and yam undulating paths which are

required to discretely model each yarn within the RUC. A detailed description of the
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geometric modeling approach for the 2x2, 2-D triaxial braided composite was presented in

Refs. 2 and 3.

Diseretization of Yarns

Overall composite properties were determined by discretizing each of the yarns within

the RUC. The straight portions of each yarn path were modeled as a single yarn slice. Along

an undulating portion, the yarn was divided into n, equal, piecewise straight slices made

perpendicular to its in-plane direction and normal to the X-Y plane (Fig. 5). Thus, the

undulating, sinusoidal yarn path was approximated by n interconnected straight yarn slices.

The spatial orientation of each yarn slice was described by the in-plane angle, 0, that it

made with the X-axis (Fig. 5) and the out-of-plane angle, [3, that it made with the X-Y plane.

For the woven architectures, the angle 0 was either 0 (warp yarns) or 90 (fill yarns) degrees.

For the braided composites, the angle 0, for the braider yarns, was determined from a

knowledge of the braid angle. The angle I_, for both woven and braided architectures, was

calculated, for each yarn slice, by differentiating the sine function used to describe the

undulating yarn centerline path [2]. For the yarn slice that modeled the straight portions of the

yarn path, [3 = 0 was used. The interstitial matrix was represented as an isotropic material

slice having orientation angles 0 = 13 = 0.

Calculation of Three-Dimensional Effective Stiffnesses and Thermal Stresses

For the purpose of calculating overall properties, the RUC of the textile composite was

treated as a spatially oriented fiber composite composed of yarn slices with transversely

isotropic material properties and longitudinal material axes oriented at known angles 0 and [3.

A stress averaging technique [2, 3] based on an iso-strain assumption within the RUC was used

to compute the overall stiffness matrix [Ceff ]. The effective stiffness matrix [Ceff ] of the

woven or braided RUC was written as a summation over all the N yarn slices in the RUC



(including the interstitial matrix material slice) in terms of the yarn slice stiffness matrix

[C' ]., transformation matrix IT]m, and yam slice volume fraction V= as [2, 3]

N

(1)

The 6x6 stiffness matrix [C' ], defines the three-dimensional stress-strain relationship for the

mm yam slice which is assumed to be a transversely isotropic material.

The five independent material constants (Ell, E22, G12, v12, and v2a, subscript 1

corresponds to the axial fiber direction) that are required to define the [C' ]. matrix could be

measured quantities based on impregnated yam tests or could also be estimated by a rule of

mixtures or a micromeehanics analysis (e.g. Ref. 16) from constituent properties. Such an

estimate would require a knowledge of fiber properties, matrix properties and the yam packing

density Pd (or yam fiber volume fraction). The transformation matrix [1"]m in Eq. (1) is

defined in Appendix A and is used to transform the strains from the global RUC coordinates

(XYZ) to yarn slice material coordinates (123). The [TITm matrix is the transpose of the

matrix IT] m.

Thermal residual stresses in the yam slices were calculated based on the iso-strain

assumption. For the mth yam slice, thermal residual stresses were given by

-

where AT is the change in temperature from the stress free state, {ct'} are the coefficients of

thermal expansion (CTE) of the mth yam slice and {_} are the overall CTE for the RUC given

by [21



c to'l)} (3)

A convergence study was performed to determine the appropriate number of yarn

slices, n, in the undulating portions of the yarns, required to yield converged values for the

overall stiffnesses [Ceff ]. The computed stiffnesses for the woven and braided composites in

the present study were found to be unchanged for n > 12. A value of n = 12 was used for all

the analyses in this study.

Nonlinear Shear Response

The importance of shear material nonlinearity in the analysis of fabric reinforced

composites has been recognized in previous studies [5, 8, 13, 14]. A three parameter equation

developed by Richard and Blacklock [17] is adopted here to represent the nonlinear shear

response of both the impregnated yarns and the resin. The shear stress Xla is related to the

shear strain Yl2 by [17]

Gi2 _¢12
_,2 ffi l (4)

[
is the ultimate shear strength, and m is awhere Gl2 is the initial linear shear modulus, xl_

shape parameter which can be determined by a curve-fit to experimental shear stress-strain data

for the matrix [18] and the unidirectional composite [19]. Equation (4) can be differentiated

with respect to the shear strain to give an expression for the tangent shear modulus (G_2)i at

each incremental load step i as [20]
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_ dx,21 = Gn
I

(5)I I
(O12)i dYl2 i

Equation (5) was used to compute the instantaneous shear moduli, GI2 and G13 , for each yarn

slice (including the resin material slice) in the RUC during incremental loading. For the

interstitial matrix material slice the octahedral shear stress and octahedral shear strain were

used in Eq. (5).

Incremental Approach

The Full Newton-Raphson Method [21] was adopted in the present technique for the

incremental analysis of 2-D woven and braided composites. Thus, the overall stiffness matrix

for the textile RUC was computed at each incremental step. For an increment of applied

stress, {Ao},, at the ith increment, the overall incremental strains, {Ae}i, were calculated as

[so ]i,: (6)

where [Scfr]i-i is the instantaneous overall compliance matrix calculated at the (i-l) th

incremental step and [C¢ff] is defined in Eq. (1). The incremental stresses, {AOys} i, in each

yarn slice within the RUC, were calculated based on the iso-strain assumption as

{AOy s }i = [C']i., IT] {_}, (7)

where the 6x6 stiffness matrix [C'] i-1 defines the three-dimensional stress-strain relationship

for the yarn slice and the transformation matrix IT] is defined in Appendix A. The [C" ]i-1
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matrix includes the effects of nonlinear shear (Eq. (5)) and also the effects of damage

accumulation (described later). The incremental yarn slice stresses (Eq. (7)) were volume

averaged [2, 3] after transforming to global RUC coordinates to compute the new overall

stiffness matrix [Cc_]i (see Eq. (1)).

The cumulative stresses in each yarn slice were used together with appropriate failure

criteria (described later) to predict failure at each incremental step. Some of the strains and

stresses in the undulating portions of a yarn were calculated using a yarn bending model

(described later) which accounted for the nonlinear effects of yarn straightening/wrinkling.

Failure within the yarn slices in the model was accounted for in two different ways. A

stiffness reduction scheme (described later), based on the mode of predicted failure, was used

to account for yarn slice failure throughout the RUC. For yarn slices, in the undulating

portion of the yarn, that failed in a transverse normal or longitudinal shear failure mode,

failure was also accounted for by using a cracked yarn bending model (described later) to

account for the change in yarn compliance.

Yarn Bending Model

A curved beam on elastic foundation model was used in the present study to represent

the bending and straightening/wrinkling behavior of the undulating portion of the yarns within

the RUC. The Euler-BernouUi beam theory was assumed to be applicable to the impregnated

yarn. The constraint provided by the surrounding interstitial matrix and yarn material was

represented by an elastic foundation. Using the coordinate system shown in Fig. 6, the initial

sinusoidal undulation, zo, of the yarn can be described as:

z. = Ao sin([_ x), 1_ -'- _ (8)
Lu

where L u is the yarn undulating length and Ao is the amplitude of the sine wave used to

describe the yarn undulation. Note that the x-axis is oriented in the direction of the yarn path.
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The deformation, z, of the yarn upon application of a force F (tension or compression) is

assumed to be of the form [22]:

z = A, sin(13 x) (9)

where A 1 is the amplitude of the yarn deformation. Thus, the deformed shape, zl, of the yarn

is given by

z I = (A o + A,) sin(13 x) (10)

The principle of minimum potential energy was used to derive an expression for the unknown

coefficient A 1. The potential energy for the curved beam on elastic foundation (Fig. 6) can be

written based on the analysis of Lee and Harris [23]:

H - 21_,/_AEttL--_) + l(FL. 132 At (At + 2Ao )) + _-8(EI1At'A_13'Lu) +U F

(11)

where the first two terms represent the potential energy due to the extensional deformation in

the yarn and the work done by the applied force F, respectively, the third term represents the

bending energy of the yarn, and U F represents the potential energy of the elastic foundation

(derived later). Ell is the axial modulus of the impregnated yarn material, and A and t are

yarn cross-sectional area and thickness, respectively.

The elastic foundation was assumed to be an array of linear springs which carded only

tension-compression forces. The shear stiffness of the foundation was assumed to be

negligible, thus, allowing for local relative motion between interlacing yams. Such a relative

motion would occur in the presence of a cross-over damage mechanism which was observed

and modeled by Stanton and Kipp [7].

The through-thickness modulus, Ezz, of the textile composite, calculated using the

stress-averaging scheme described earlier, was used in the derivation of the spring constant for
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the foundation which was assumed to extend through one layer above and below the layer

being modeled. Thus, for a layer with a thickness of (2 A o + t), the foundation was assumed

to have a total length, Hk, (see Fig. 6) of Hk - 3 (2 A o + O. Due to the sinusoidal shape of

the undulating yam, the foundation spring constant, K, was a function of x and was derived,

using the procedure developed by Lee and Harris [23], as

K - 2 A a E.. t (12)
t A. (a _ -sin_(I 3 x))' a - 3 + A--_

The potential energy, UF, of the foundation in Eq. (11) can then be derived as

L,/2

U_ = _ _K z 2 dx
-L.12

(13)

Using Eqs. (9), (11)-(13) and the mininmum potential energy theorem, an expression for the

unknown coefficient, A l, (Eq. (9)) can be derived as

= 132A0 I = A-----_-z k = 4E,,Aa( a. 1)E,, 113F + F 132 + k' 12At (14)
' tA. _a_-I

Only the yam strains in the x-z plane (Fig. 6) were calculated from the above model. The

other components of the strains were available from the iso-strain assumption discussed earlier.

The strains in the x-z plane were expressed as [23],

I_ -- -¼(132 An(A, +2A.)) [I + cos(2 13x)] + gi-.

F
E z _--" .VI3 l_i.,, El., .-

E n A

(15)
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where v13 is the Poisson's ratio for the impregnated yarn material (1 - fiber direction), and gi-s

is the strain, in the x-direction, available from the iso-strain assumption. The axial stress, o x,

in the impregnated yarn was given by, a x = (F/A) and the shear stress, x,,z, was given by

'rxz = (Q/A), where the transverse shear force Q was derived by considering the equilibrium

of the curved beam on elastic foundation model as [22]

Q = FdZl dM M = Ell I md2z (16)
dx dx ' dx 2

The other components of stress in the undulating yarn were calculated, for each yarn slice,

based on the iso-strain assumption. The above strains and stresses were calculated at the

centroid of each yarn slice along the yarn undulating portion and used in failure criteria

(described later) to predict the onset and growth of damage in the undulating portion of each

yarn. A special cracked yarn bending model (described later) was used to account for the

effect of yarn cracking on the deformation of the undulating portion of the yarn.

The geometrically nonlinear effects of yarn straightening/wrinkling were accounted for

in the yarn bending model by updating the yarn undulation length, L,, and the amplitude, A o,

of the sinusoidal yarn undulation at each incremental step, i, as

(Ao)i+, = (Ao) , + (A,) i

(L.),+,=(Lo),{I+
(17)

The above yarn bending model was applied, at each incremental step, to each undulating

portion of each yarn within the textile RUC.

Failure Criteria

Fiber dominated failure of the impregnated yarn slices was predicted using a maximum

strain criterion for both tension and compression axial yarn stresses (all, 1 - fiber direction).
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Matrix dominated failures within the yarn slices were predicted using maximum stress criteria

for each matrix dominated failure mode, such as, transverse tension (022, q33), transverse

shear ('c23), and longitudinal shear (xl2 , _13).

Matrix material slice failure was predicted using two different failure criteria. A

maximum principal stress criterion was used in the absence of applied shear stresses, while, a

maximum octahedral shear stress criterion was used in the presence of shear stresses.

Composite failure was predicted when (i) axial yarn failure was detected anywhere in

the RUC; or (ii) all yarn slices failed in the same failure mode (e.g. transverse tension or in-

plane shear) and failure was detected in the interstitial matrix material slice.

Stiffness Reduction

The stiffness reduction scheme used by Blackketter, et al [14], for the damage

modeling of plain weave composites, was adopted in the present analysis technique. The

stiffnesses of each impregnated yarn slice in the model were reduced based on the predicted

mode of failure. For transverse tension failure, the corresponding Young's modulus was

reduced by 99% along with the reduction of shear moduli Glz and G13 by 80%. For

transverse shear failure, under the action of x_ stresses, the transverse moduli F_,zzand F_.o3,

and the shear modulus G23 were reduced by 99% while the longitudinal shear moduli G12 and

G13 were reduced by 80%. For longitudinal shear failures, under the action of xr, stresses,

E.z2 and G12 were reduced by 99%. For longitudinal shear failures, under the action of x_3

stresses, F_,33and Gl3 were reduced by 99%.

For the matrix material slice, all stiffnesses were reduced by 99% when matrix failure

was predicted.

Cracked Yarn Bending Model

A cracked beam on elastic foundation model was used to model yam splitting failure in

the undulating regions. The yarn splitting, which could result due to normal, 033 , or
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longitudinalshear,xl3, stresses, was modeled as a yarn centerline crack of length, L¢, as

shown in Fig. 7. The length L c was determined based on the number of yarn slices that had

failed by exceeding either the (_33 or the "t13 stress allowables in the yarn undulating region.

The deformation of the cracked yarn model was assumed to be of the same form (Eq. (9)) as

the yam bending model, described earlier. The bending energy, Ub, of the cracked yam was

derived by representing the cracked region as two beams of thickness (t/2) and was given by

_ a_ t 2 134 L_)
U b - -_-_(Et, A A 2

(3"_( sin(n(L_/L,))

a t = 1 + \4/_, n

Lc

Lu

08)

The other energy terms in Eq. (11) remained unchanged for the cracked beam model. Using

the minimum potential energy theorem, the unknown coefficient, A l, for the cracked yam

model was given by

A, = -F 13z Ao (19)
a_ Eit I134 +F132 +k

As in the yam bending model, only the yarn strains in the x-z plane were calculated (using

Eq. (15)) from the above model. The other components of the strains were available from the

iso-strain assumption discussed earlier.

RESULTS AND DISCUSSION

The above analytical technique, for predicting textile composite stiffness and strength

properties, was implemented in a user-friendly, menu-driven, personal computer-based code

called Textile Composite Analysis for Design (TEXCAD). Besides the strength predictions,

TEXCAD also predicts overall in-plane stress-strain response and the sequence of the yam
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slice failures and failure modes for any uniaxial or multiaxial applied stress states. In the

present paper, TEXCAD was used to analyze 2-D plain weave and 2x2, 2-D triaxial braided

composites. The calculated in-plane stress-strain response and strengths were correlated with

available test data. Parametric studies were also performed to study the effects of various

fabric parameters on the strength properties.

All the analyses in the present study were done for textile composites which consisted

of yarns made of Hercules AS4 graphite fibers impregnated with Hercules 3501-6 epoxy

matrix. A yarn fiber packing density, Pd, of 0.70 was measured, in Ref. 14, using image

analysis, for plain weave composites. For the braided composites Pd = 0.75 was assumed for

the impregnated yarns based on the analysis in Ref. 15. A fiber diameter, df, of 0.007 mm

was used in all calculations.

The mechanical and thermal properties used for the impregnated yarns (Vf = 70% and

75%) and the resin are given in Table 1. The CTE's for the impregnated yarns were

calculated in Ref. 2 using a micromechanics analysis based on an Airy's stress function

approach for a square fiber packing [16, 24]. The nonlinear shear shape parameter, m,

(Eq. (4)) was determined by a curve-fit to experimental shear stress-strain data for the matrix

[18] and the unidirectional composite [19] and is also given in Table 1.

Since the strength properties of the impregnated yarns are not usually available, the

strain/stress allowables for the impregnated yarns were estimated based on the available

unidirectional composite strengths (V r - 60%) and the calculated fiber-matrix stresses from a

micromechanics analysis [16, 24] for a Vf = 75%. Thus, the transverse strength of the

unidirectional composite (Vf = 60%) was reduced by 50% to get the transverse strength of the

impregnated yarns (Vf = 75%) to account for the 50% higher fiber-matrix normal stresses for

the higher fiber volume fraction. Similarly, the shear strength of the impregnated yarns was

estimated by reducing the unidirectional composite (Vf = 60%) shear strength by 20% to

account for the 20% higher shear stresses at the fiber-matrix interface for Vf - 75%. The

axial (tension and compression) ultimate strains for the unidirectional composite were used
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without modification for the impregnated yarns. The ultimate strain and stress properties used

in the present study for the impregnated yarns and the resin are given in Table 2.

All the strength calculations in the present study were performed by accounting for the

effects of thermal residual stresses which were calculated (Eq. (2)) for a temperature change of

150 oC from the stress free temperature.

Plain Weave Composites

The tension, compression, and shear strengths for plain weave composites calculated

using TEXCAD (the present analysis) are shown in Table 3. The calculated results correlated

well with test data. The architecture was not fully specified for the plain weave composites in

Ref. 14. Therefore, a yarn spacing of 2.22 mm and a yarn size of 3 k (k - one thousand

filaments) was assumed for the analysis.

Table 3 also includes results for plain weave composites with different overall fiber

volume fractions and yarn characteristics (size and spacing). A 3.3% increase in the overall

fiber volume fraction (from 60% to 62%) did not change the shear strength but led to a

decrease in the tension and compression strengths by 7.7% and 3%, respectively. This

decrease in strength may be attributed to the increase in the yarn crimp angle from 8.9 ° to

10.7 ° for the higher fiber volume fraction. The tension and compression strengths for the

composite with the 12 k yarns were lower by 23% and 18%, respectively, than the composite

with 3 k yams and a 60% fiber volume fraction. The larger yam size led to a crimp angle of

10.2 ° , thus, accounting for some of the drop in the strength. It also led to an increase in the

rate of damage accumulation during tension and compression loading, thus, leading to the

predicted trend.

The stress-strain response under tension and compression loading is shown in Fig. 8

and under in-plane shear loading is shown in Figs. 9 and 10. The predicted knee in the

tension stress-strain response at about 80 MPa (Fig. 8) correlated well with the test data [14].

This knee resulted from the transverse tension failure of the yams that were oriented
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perpendicular to the loading direction. The knee behavior was not predicted under

compression loading (Fig. 8) because the transverse compression strength of the yarns was

much higher than their tension strength (Table 2). Longitudinal shear failure in the undulating

regions of the longitudinally loaded yarns was predicted under both tension and compression

loading during the upper half of the stress-strain curve.

Under shear loading, longitudinal shear failure initiated in the yarn slices at around

85 MPa. Damage accumulation in the yarn slices contributed to the initial part of the

nonlinear response (Figs. 9 and 10). This was consistent with the analytical predictions in

Ref. 14. The final part of the stress-strain response, after all the yarns had failed,

corresponded to the nonlinear shear response of the matrix material slice. Final composite

failure was predicted when the interstitial matrix failed. The experimental [14, 25] and the

predicted shear stress-strain curves (Figs. 9 and 10) were in reasonably good agreement.

2x2, 2-D Triaxiai Braided Composites

The three different triaxial braided composites tested in Refs. 12 and 26 were analyzed

using the present TEXCAD analysis. The yarn architecture parameters such as braid angle,

braider and axial yarn sizes, axial yarn spacing and overall composite volume fraction for the

three architectures (A1, B1, B2) are given in Table 4. These parameters along with a yarn

packing density of 0.75 and a fiber diameter of 0.007 mm were used as input to TEXCAD for

calculating the results in Table 5. The specimens in Ref. 12 were made with AS4 graphite

fiber yarns and Shell 1895 epoxy resin. It was assumed that the 1895 epoxy had the same

material properties as the 3501-6 resin (Tables 1 and 2). Thus, the material properties for the

impregnated yarns and the resin in Tables 1 and 2 were used in the present analysis of 2-D

tfiaxial braids.

Correlations of the computed strengths (Table 5) with test data [12, 26] were

reasonably good for all the three architectures. Under longitudinal tension loading, transverse

failures were predicted in the braider yarns at about 75 MPa followed by matrix failure at
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around300 MPa. Final compositefailure occurredwhentheaxial yarnsfailed in theaxial

tensionfailure mode. The longitudinaltensionstrengthpredictionfor the B1 architecture

correlatedwell with thetestdata,however,thepredictionsfor the A1 andB2 architectures

were higherby 17%and28%, respectively. A parametricstudywasperformedto investigate

theeffectsof braid architectureparameterson tensionstrengthin order to understand(i) the

poor correlationbetweenpredictionsandtestdatafor theA1 andB2 architectures;and (ii) the

experimentallyobservedlargedifferencein thetensionstrengthsfor the largelysimilar B1 and

B2 architectures(Tables4 and5).

The effectsof axial yarn spacing,overall fiber volumefraction, braid angleandaxial

yarncrimp on the longitudinaltensionstrengthwereinvestigatedasapart of this parametric

study. Axial yarnspacingis a functionof themandreldiameterandthenumberof axial yarn

carriersusedduring thebraidingoperation. Inadvertentuseof a different mandreldiameter

canresult in anaxial yarnspacingthat is different from whatwas intended. The overall fiber

volumefraction for a textile composite,measuredafter fabrication,canoften differ, by a few

percent,from thespecifiedfiber content. Furthermore,variationsmayoccur in the fiber

volumefraction from onecompositeplateto another. Variationsin thebraid anglearealso

possibleduring fabrication. Although theaxial yarnsare intendedto remainstraightafter

fabrication,axial yarncrimp (or waviness)can resultfrom (i) thebraiding operationif the

tensionin theaxial yarnsis inadequateor (ii) the interpenetrationof thebraidedlayersduring

compactionof thecomposite. Note that, thepredictionsin Table5 wereobtainedby assuming

straightaxial yarnswith nocrimp.

The resultsof theparametricstudyare includedin Figs. 11-14. Thetestdata[12, 27]

availablefor thethreedifferentarchitecturesis alsoincludein thefigures. Thelongitudinal

tensionstrengthremainedunchangedwith theaxial yam spacing(Fig. 11)andthis was

consistentwith thetrend in thetestdata. The tensionstrengthincreasedwith increasing

overall fiber volumefraction (Fig. 12)andthis trendwasalsoin agreementwith thetestdata.

The strengthwasnot very sensitiveto changesin volumefractionandonly increasedby 1%
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for a percentchange in the volume fraction. The strength decreased with an increase in the

braid angle (Fig. 13). As with the volume fraction, the strength was not very sensitive to

changes in the braid angle and only decreased by 1.5 % for a percent change in the braid angle.

As expected, the tension strength decreased with increasing axial yarn crimp angle (Fig. 14).

A crimp angle of only 5 degrees led to a strength reduction of about 5.5% and a crimp angle

of 10 degrees led to an average reduction in strength of about 15%.

Based on the micrographs in Fig. 3, some crimp in the axial yarns is apparent in the

longitudinal cross-sectional view. This axial yarn crimp will lead to (i) reduced longitudinal

tension strengths than predicted by a model that assumes straight axial yarns and (ii) a large

scatter in the data (as observed for the B1 and B2 architectures) for specimens from different

panels or batches. The range of tension strength variability for axial yarn crimp variations

from 0 to 12 degrees has been shown in Fig. 15 for the three different architectures. The

measured tension strengths for the AI, BI, and B2 architectures were found to be within the

range of tension strengths predicted after accounting for axial yam crimp.

The predicted transverse tension and compression strengths (Table 5) follow the general

trends in the data. Under transverse tension loading, damage initiated by the transverse

tension failure of the axial yams at about 60 MPa. Transverse tension failure in the braider

yarns was predicted just before final composite failure which occurred when the matrix

material slice failed. The effects of yarn size on the transverse strength of the yams and

specimen edge effects were not accounted for in the prediction of transverse tension strength.

Under longitudinal compression loading, compression failure of the axial yams in the

undulating region led to the final failure of the composite. The longitudinal compression

strength of braided composites is expected to exhibit more variability than laminated

composites due to the inhomogeniety of the material form and the effects of axial yarn crimp.

The predictions for both the transverse tension strength and the longitudinal compression

strength (Table 5) using the TEXCAD program are, therefore, expected to be merely good

engineering estimates of strength.

22



SUMMARY

A generalpurposemicromechanicsanalysisthat discretelymodelsthe yarnarchitecture

within the textile repeatingunit cell, wasdevelopedto predictoverall, threedimensional,

thermaland mechanicalproperties,damageinitiation andprogression,andstrength. This

analyticaltechniquewas implementedin a user-friendly,personalcomputer-based,windows

compatiblecodecalledTextile Composite Analysis for Design (TEXCAD). TEXCAD was

used to analyze plain weave and 2x2, 2-D triaxial braided composites.

Based on the results for the plain weave composite, a 3.3% increase in the overall fiber

volume fraction did not change the shear strength but led to a decrease in the tension and

compression strengths by 7.7% and 3%, respectively. A larger yarn size led to a larger crimp

angle and an increase in the rate of damage accumulation during tension and compression

loading resulting in lower strengths. The knee behavior under tension loading was well

predicted by the TEXCAD analysis and correlated well with the test data. Under shear

loading, damage accumulation in the yarn slices and the nonlinear shear behavior of the matrix

contributed to the nonlinear response. The experimental and the predicted shear stress-strain

curves were in reasonably good agreement.

Results of the parametric study for the 2x2, 2-D braided composite indicated that the

longitudinal tension strength remained unchanged with the axial yarn spacing and it increased

with increasing overall fiber volume fraction and both these trends were consistent with the test

data. The strength decreased with increasing braid angle and increasing axial yam crimp

angle. A crimp angle of only 5 degrees led to a strength reduction of about 5.5% and a crimp

angle of 10 degrees led to an average reduction in strength of about 15%.

The present TEXCAD analysis provides a useful tool for the prediction of thermo-

elastic constants, damage initiation and growth, and strength for a wide range of textile

composite architectures. It also provides a means to conduct sensitivity studies for the

numerous parameters that can affect the stiffness and strength properties of textile composites.

Finally, it has the potential for being implemented as a material constitutive model in structural
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stress analysis codes, as a substitute for the currently used phenomenological or curve-fit

constitutive models, thus, providing the capability of structural analysis for textile composite

structures.
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APPENDIX A

The transformation matrix [T], n in Eq. (1) is defined as [2, 3]

IT],,

2
a2j

2
a3!

2a2_a3_

2at,a3_

2at,a:_

2 2
at2 at3 at2at3 attar3 aHat2

2 2
a22 a_ a22az3 a23a2_ a2ta22

2 2
a32 a33 a32a:_ a33a3t a3ta32

2a32a,,,, 2az3a33 (a=a33 + a23a32) (a23a:,l +a21ax_) (a2tan +a22a,I)

2a12a32 2at_a33 (a_:a,3 +a33at2) (atla_ +a13a3t) (a3tan +a32a11)

2a,2am 2al3a_ (al:a_ +al3a=) (a,3a:l +alla_) (a,la,, +a12a21)

(A1)

where aij (i = 1-3, j = 1-3) are the direction cosines between the yarn slice material

coordinate axes (123) and the global RUC axes (XYZ) (see Fig. 5). For a yam slice with its

longitudinal material axis (1-axis) oriented at angles 0 and [3 with respect to the global RUC

coordinates, the 3x3, [aij ] matrix (i = 1-3, j = 1-3) is given by

cos(0)cos(13)
= -sin(0)

-cos(0) sin(13)

sin(O) cos(l_)cos(0) sin0(l_) ]

-sin(0)sin (13) cos(13)J

(A2)

Equation (A2) was derived by assuming that the 2-axis (i.e. the in-plane transverse direction,

see Fig. 5) of the yarn slice was always perpendicular to the global Z-axis for any 0 or 13

rotation of the yarn slice l-axis (i.e. the axial fiber direction). This merely simplified the

definition of the direction cosines without compromising the generality of the approach.
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Table I.-Yarn and resinpropertiesused in the analysis.

Material

Yarn[14]

Yarn[15]

Resin [15]

El I, GPa

151.00

144.80

3.45

10.10

11.73

3.45

GI2, GPa
CTE at1,

VI2 V23
lO_S/oC

5.70 0.24 0.50 -0.324

5.52 0.23 0.30 -0.324

1.28 0.35 0.35 40.000

CTE a22,

10-6/oC

14.000

14.000

40.000

m

2.78

2.78

2.34

Note: The 1-axis is along the fiber direction, the 2-axis is perpendicular to the fibers but in

the plane of the lamina and the 3-axis is in the out-of-plane direction.

Table 2.- Ultimate stress/strain properties for the impregnated yarns and resin.

Material

Yarns

Resin [18]

Note."

(O1 l)Ten

MPa

84.9

(_1 l)Com

MPa

84.9

(E 1 l)Ten

0.014

(I_II)Corn

0.010

(_22)Ten

MPa

26.0

(_22)Com

MPa

206.0

(o19 (o23)
MPa MPa

87.5 102.4

98.3 98.3

The 1-axis is along the fiber direction, the 2-axis is perpendicular to the fibers but in

the plane of the lamina and the 3-axis is in the out-of-plane direction.
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Table 3.- Comparison of results for plain weave composites.

Source Yam size Yam spacing Vf

(k) (mm) (_)

Ref. 14 3 2.22 60.0

Loading

Tension

compression

Strength

(MP_)
753

TEXCAD

Prediction (MPa)

780

- 660

Shear 103 91

Ref. 25 12 3.33 52.2 Tension 6OO

Compression - 540

Shear 100 94

Ref. 28 3 2.22 62.0 Tension 690 720

Compression 656 640

Shear 91

Table 4.- Input parameters for 2x2, 2-D triaxial braided composites [12].

2-D triaxial

braid

Braid angle,

degrees

Braider yam

size, k

Axial yam

size, k

Al 63.0 12 24

B1

Axial yam

spacing, mm

6.096

Overall fiber

volume

fraction, %

54.0

66.5 6 18 5.320 52.3

B2 70.0 6 18 5.820 48.9
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Table5.- Comparisonof resultsfor 2x2, 2-D triaxial braidedcomposites.

Architecture

Longitudinal tension

strength (MPa)

Test [121 TEXCAD

Transverse tension

strength (MPa)

Test [121 TEXCAD

249+ 14 350A1 432±21 504 384

B1 556±10 546 289±17 340 508 429

B2 394±11 507 310±35 400 390 370

Longitudinal

compression strength

(Mea)

Test [261 TEXCAD

308
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5.64mm

Braider Yarns Axial Yarns

(a) Longitudinal section along axial yarns

5.64

Axial Yarns
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Fig. 3 - Typical cross-sectional micrographs of a 2x2, 2-D triaxial

braided composite. 34
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